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Abstract— With a software-based approach using commercial off-

the-shelf CMOS imaging sensors to detect ionizing particles a low-

cost radiation monitor is published to improve fault tolerance of 

nanosatellites with commodity hardware. We achieve this by 

segmenting image artefacts caused by radiation effects simultane-

ously within the original capturing images. For this purpose, a 

two-step segmentation method was developed using already 

acquired images from a miniaturized limb sounding spectrometer 

that derives atmospheric temperature profiles. The method covers 

badpixel elimination and particle flux determination by a 

minimalized amount of additional computational costs. This 

allows the determination of the radiation environment close to the 

imaging instruments inside the satellite. We present the segmented 

results and compare it with simulated as well as measured data 

from a reference radiation monitor experiment. The detected 

particle flux is up to a factor of five lower than the simulated flux. 

These effective particle flux values will be used to improve 

measurement time by triggering mitigation measures on demand 

and expand their life time. 

 

Index Terms— CMOS, cosmic ray, CubeSat, dynamic threshold, 

low-cost, mitigation, radiation monitoring 

I. INTRODUCTION 

Nanosatellites have evolved over the past 20 years and are no 

longer just demonstration platforms; they are also used for 

scientific applications. Remote sensing instruments as part of 

observation units are typically launched in low earth orbits 

(LEO) to provide global coverage [1],[2]. Realized with large 

pixel arrays, imaging capabilities are combined with spec-

trometer techniques e.g., to measure structures and tempera-

tures with high spatial resolution. In order to meet these and 

other growing demands, current remote sensing applications [3] 

use scientific complementary metal oxide semiconductor 

(sCMOS) image sensors characterized by high signal-to-noise 

ratios, highly integrated readout electronics and low-cost 

procurement [4]. 

Longer mission durations are increasingly targeted for 

remote sensing instruments, e.g., to observe long-term climate 

processes. The mission lifetime will be influenced by radiation 

effects in electronic components. These radiation effects can be 

divided into cumulative effects (Total Ionizing Dose-TID and 

displacement damages) and single event effects (SEEs). While 
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the cumulative effects lead to progressive degradation of 

components, SEEs cause problems such as bit flips, functional 

interruptions, or even destruction of components [5],[6]. 

Depending on the orbit, there are different radiation 

environments with low radiation dose rates in equatorial and 

higher in polar LEOs. The polar orbits require careful radiation 

protection and safety margins in design requirements, e.g. if the 

South Atlantic Anomaly (SAA) is passed [7]. To simplify 

design strategies, the use of particle detection can help respond 

to unexpected events such as geomagnetic storms, 

inhomogeneous or anisotropic radiation environments. 

Combined with on-demand mitigation measures, this can 

increase the use of standard scenarios in simulating the 

radiation environment, rather than worst-case scenarios. For 

example, no additional margin in shielding is required, resulting 

in savings in design costs and testing steps. In addition, 

mitigation techniques such as triggering protection circuits 

during heavy radiation fluxes may be feasible [7]. 

Customized CMOS image sensors or Monolithic Active 

Pixel Sensors (MAPS) have been used as particle detectors in 

space [10],[11], following developments at current particle 

accelerators like CERN [8],[9]. In addition, studies for particle 

detection with commercial of the shelf (COTS) based imaging 

sensors were initiated [12]. However, such additional particle 

detectors are not suitable for nanosatellites due to their addi-

tional mass, size, power consumption and cost. 

In this paper, we extend the functionality of a COTS CMOS 

imaging sensor to include the ability to detect particles suffi-

ciently well parallel to its original measurement task to 

determine the real radiation environment behind the shielding. 

As part of the AtmoSHINE instrument, the sensor is located in 

an imaging spatial heterodyne interferometer (SHI) launched in 

December 2018 to derive atmospheric temperature profiles. We 

use an adapted dynamic threshold method to determine the 

radiation environment. This low cost radiation monitor solution 

provides an extension to every imaging instrument and reacts 

against unexpected events and enables additional mitigation 

techniques on the satellite electronics. The methodological 

challenge in this integrated solution approach is to distinguish 

between the original measurement data and the radiation 

artifacts. Due to fast changing measurement scenes in single 
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pixel rows caused by variations of the position control system 

and varying stray light as well as the degradation effects of the 

sensor itself, single frame methods were needed. 

The paper is structured as follows. First, we describe the 

measuring instrument that serves as a reference for our 

measurement and verification data, as well as the development 

of a method to flag and separate certain image artifacts. 

Afterwards, the quality is verified with a reference particle 

counter and simulated data. The accuracy and computational 

costs are analyzed and discussed in comparison to other cosmic 

ray segmentation methods. Finally, the first results of particle 

detection on real measured data are presented and potential 

protection measures are discussed. In the outlook, further 

development steps are outlined and additional planned 

functions of this monitor described.  

II. DESIGN MATERIALS AND METHODS 

A. Instrument overview 

 
 

Fig. 1. AtmoSHINE flight model, a miniaturized Spatial Heterodyne 

Interferometer (SHI) launched as secondary payload in December 2018. 
 

A highly miniaturized limb sounder (AtmoSHINE) suited for 

nano/micro satellites developed at Forschungszentrum Jülich 

utilizes a monolithic SHI for atmospheric temperature measure-

ments [3] with a planned lifetime of 3 years [13]. It is a fully 

integrated remote sensing instrument with optics, focal plane 

array, electronics and shielded case, which is depicted in Fig. 1. 

The instrument operates as a secondary payload on a Chinese 

technology demonstration satellite. It is mounted on the shadow 

side of the satellite and measures the nighttime atmosphere 

from a sun synchronous orbit (SSO) at 1067 km altitude. To 

achieve the science mission objectives, selective hardening 

using state-of-the-art COTS components were used in combina-

tion with targeted mitigation measures. 

The instrument contains a sCMOS sensor (HWK1910A) 

from Fairschield (BAE Systems) with a dimension of 5.04 µm 

x 5.04 µm and a total resolution of 1160 x 1976 pixels, which 

is well suitable for LEO operations [14]. The sensor is located 

close to the readout electronics and placed perpendicular to the 

viewing direction of the instrument. 

AtmoSHINE has measured over a 10-month period since 

December 2018 in a timeshare with other instruments. During 

the observation periods, the instrument passes up to 14 times 

per day the SAA region. Fig. 2 (a) shows a typical undisturbed 

image of the spectral measurement and Fig. 2 (b) a disturbed 

one affected by radiation inside the SAA region. Both images 

show 2D-interferograms of the O2-A band night glow layer 

with spectral information in horizontal direction and spatial 

information in the vertical direction. Every image contains 

sensor specific artifacts e.g. bad pixel, and can be affected by 

anomalies caused by ionizing particles depicted in Fig. 2 (b). 

  

Fig. 2. (a) Undisturbed and (b) disturbed interferogram of the O2-A band 

nighttime limb emission by ionizing radiation as measured by the AtmoSHINE 

instrument. The left subfigure depicts measurements outside and right one 

inside the SAA.  

B. Artefact Segmentation 

Imaging artifacts are frequently observed in imaging sensors 

on satellites and interfere with the measurement data. In this 

work, artifacts are detected and segmented from measurement 

information and divided into sensor-specific and radiation-

specific artifacts. A two-step approach based on an adapted 

dynamic threshold (ADT) is used to segment and separate these 

both artifact types. The two steps differ in the frequency of their 

execution and are marked as "on demand" and "frame by frame" 

in Fig. 3. For the first step, an adapted Interframe Statistics 

Median Filtering Detection (ISMFD) is implemented to seg-

ment the sensor-specific artefacts, such as more sensitive, dead 

or flickering single pixels, related to production processes and 

degradation effects [15]. This step requires multiple images and 

needs to be executed on demand, therefore this step can be done 

on the satellite in parallel as well as on ground. The second step 

involves segmented and separated radiation specific artefacts 

represented by variants of particle tracks, the number is counted 

and associated with an integral particle flux. This step has to be 

frame by frame. Both steps are designed to use a wide range of 

measurements so that they can be performed in parallel with the 

actual measurement in as many scenarios as possible. 

1) Sensor artefacts 

In this section, we take a closer look at the "Sensor-specific 

segmentation" task from the first on-demand step, which can be 

seen schematically in Fig. 3. To detect sensor-specific artifacts, 

we use a slightly modified form of the "Interframe Statistics 

Median Filtering Detection" (ISMFD) method [15]. The 

ISMFD performs flickering pixel detection in a measurement 

scene by using different single frames. Compared to other 

methods for detecting bad pixels [16], it uses simple arithmetic 

operations and is easily adaptable. Within the ISMFD, single 

thresholds 𝑟𝑡ℎ are still strongly dependent on the exposure level 
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of the measuring scene, which makes the processing more 

complex. 

 
 

Fig. 3 Two-step segmentation flowchart. The 1st step (blue) segments sensor 

specific artifacts, which only needs to be performed from time to time either on 

the satellite or ground. The 2nd step (green) shows the segmentation of the 
detection, filtering and clustering radiation artefacts, which runs frame-by-

frame in parallel to the actual measurements. 
 

In order to make the segmentation more independent 

according to different exposure levels, we introduce an ad-

vanced method based on a relative gain matrix 
 

𝑟𝑓(𝑖, 𝑗) = 𝑔𝑓(𝑖, 𝑗)/𝑚�̌�(𝑖, 𝑗)  ,                 (1) 
 

where 𝑔𝑓(𝑖, 𝑗) is an original image f, as shown in Fig. 2, and 

𝑚�̌�(𝑖, 𝑗) is the median image containing the median intensity by 

the direct neighbors. The lines and columns are identified with 

i and j. The relative gain with a homogeneous exposure is 

ideally 1 and independent of the exposure level. Here we 

assume that the immediate neighboring pixels of a currently 

viewed pixel at position i, j represent a relatively homogeneous 

exposure scene. Because of an overall non-homogeneous 

exposure, we have chosen a relatively small median filter 

window of only 3x3 pixels in order to calculate the median 

image. The adaptation in Eq. (1) makes the approach simpler, 

usable for night and daylight measurements and can be used 

more generally and offers to set a threshold 𝑟𝑡ℎ after a one-time 

analysis instead of determining this threshold every time.  

A single frame bad pixel matrix  
 

𝑁𝑓(𝑖, 𝑗) =  {
1 if 𝑟𝑓(𝑖, 𝑗) > 𝑟𝑡ℎ

0 else                   
 with   𝑟𝑡ℎ = 1 + 𝛼 ×    ,  (2) 

 

can now be calculated depending on the threshold value 𝑟𝑡ℎ and 

the gain matrix where the threshold value 𝑟𝑡ℎ is calculated from 

standard deviation  of multiple relative gain matrices 𝑟𝑓(𝑖, 𝑗). 

In the analyzed histograms of the relative gain of the images, a 

normal distribution is expected with a mean of 1 and a standard 

deviation depending on the manufacturing process and the 

degradation of the sensor. The selection of α depends on the 

pixel quality of the detector and the requirements for a non-bad 

pixel, which we iterate to a value of 3. 

To consider time variant artefacts, e.g. flickering pixels and 

not only permanent bad pixels, analysis of multiple frames is 

necessary. Here we chose the detection of flickering bad pixels 

according to the ISMFD. Using a probability threshold 𝑘𝑟𝑡ℎ
 for 

the flickering of bad pixels and by means of multiple single 

analyzed bad pixel maps 𝑁𝑓(𝑖, 𝑗), we can calculate a final bad 

pixel matrix  
 

𝑅(𝑖, 𝑗) = {
1 if ∑ 𝑁𝑓(𝑖, 𝑗)𝑄

𝑓=1 ≥ 𝑘𝑟𝑡ℎ

0 else                                       
                   (3) 

 

where Q is the total number of frames acquired in a short 

contiguous time period. From the pre-analyzed histogram of 

relative gains, we know how many bad pixels we expect after 

Q frames. Therefore, the value 𝑘𝑟𝑡ℎ
 is set to a value by which 

the number of permanent bad pixels ∑ 𝑅(𝑖, 𝑗)𝑖,𝑗  equals to the 

average number of bad pixels per frame expected from the 

histogram 
∑ 𝑁𝑓(𝑖,𝑗)𝑓,𝑖,𝑗

𝑄
. 

With the resulting total matrix of bad pixels 𝑅(𝑖, 𝑗), the 

quality of the segmentation can be improved in a second step 

by detecting false positive radiation-specific artifacts. Since the 

number of bad pixels increases with the TID, the bad pixel 

determination should be repeated after a certain radiation dose 

or time period.  

2) Radiation artefacts 

Radiation-specific artifacts are pixels affected by ionizing 

particles. Artifacts are clustered into particle tracks and blobs. 

The intensity and shape of these particle tracks depend on the 

particle type, its energy, and the angle of impact on the sensor 

surface [11]. For detection of these artifacts in single-shot 

exposure imaging, common frame-based algorithms exist, e.g. 

Detect and Remove Cosmic Rays (DCR, [17]) and Laplacian 

cosmic-ray rejection (L.A. Cosmic, [18]) [19]. 

Here, an Adapted Dynamic Threshold (ADT) method was 

used considering nanosatellites criteria of limited processing 

and memory capacities. ADT is a simple method with a small 

parameter space and sufficient shape preservation of particle 

tracks. The algorithm considers an approach which is similar to 

Kirsch’s method [20]. Kirsch set a fixed value of 25% to 

estimate the background, the method was tested against images 

of dark background only. 

In ADT, a percentile value 𝑃𝑛
𝑖(𝑔𝑓) is applied for our 

application row-wise perpendicular to interferogram lines for 

each frame f, due to the spatial information of the dataset. The 

n-th percentile is an estimation of the image background at row 

i. 𝑃𝑛
𝑖(𝑔𝑓) is multiplied by parameter 𝛽 to set the threshold for 

each row. Unlike [20], parameter 𝛽 is introduced to decrease 

the false positive detected pixels. The range of 𝛽 is estimated 

based on the dynamical range of the sensor. 
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𝐷𝑓(𝑖, 𝑗) = {
1, 𝑖𝑓 𝑔𝑓(𝑖, 𝑗) > 𝛽 ∗ 𝑃𝑛

𝑖(𝑔𝑓(𝑖, 𝑗))

0, 𝑒𝑙𝑠𝑒
,             (4) 

 

where 𝛽 ∗ 𝑃𝑛
𝑖 (𝑔𝑓(𝑖, 𝑗)) is less than the total number of 

quantization steps, 𝑔𝑓 is the input frame and 𝐷𝑓 is the obtained 

boolean matrix of detected radiation-specific artifacts pixels for 

each frame (f ).  
Finally, as shown in Fig. 3, the detected pixels are clustered 

with their direct neighboring pixels to identify the particle 

tracks. All clusters with a size of only 1 Pixel are eliminated, 

because they are either undetected sensor artefacts or only weak 

interacting electrons [30]. The sensor-specific artifacts are 

eliminated by applying the bad pixel matrix 𝑅(𝑖, 𝑗) obtained by 

equation (3). The clustered artifacts enables us to count the 

particle tracks and to obtain the integral particle flux. 

Parameters 𝑃𝑛
𝑖(𝑔𝑓) and 𝛽 are optimized by tuning both of 

them based on the algorithm performance properties explained 

in section II.C. 

C. Validation of segmentation and quantification 

1) Algorithm Validation 

In order to verify the ADT algorithm, referenced data is 

chosen from an in-orbit Space Application of Timepix 

Radiation Monitor (SATRAM) [11]. SATRAM provides data 

in similar spatial and temporal context as AtmoSHINE and 

utilizing an AtmoSHINE-like sensor technology. Various dark 

images with particle tracks and blobs from SATRAM open 

access database [21] are merged with undisturbed interferogram 

image from AtmoSHINE instrument. Pixel values of SATRAM 

are scaled to the range of interferogram image pixel values to 

obtain a data set of CMOS images with predetermined artifacts 

referred in this paper as merged data. We picked a data set of 

images of filling factor ranges from <1% to 58% representing 

different radiation conditions. Filling factor is defined by the 

percentage of image pixels that are disturbed by charged 

particles [19]. Such a data set enabled us to evaluate the 

algorithm effectively and compare it to L.A. Cosmic and DCR 

algorithms. 

We evaluated ADT algorithm performance using the merged 

data and compared it to the performance of L.A. Cosmic and 

DCR algorithms. L.A. Cosmic uses a convolution Laplacian 

edge detection method [18] while DCR analyzes histograms of 

small-sized sub-frames to find deviations from the Gaussian 

distributions made by artifacts pixels [17]. The performance 

was evaluated in terms of three quantified properties: detection 

efficiency of pixels (𝐸𝑝𝑖𝑥), false-positive 𝐹+𝑣𝑒 and the counts 

of clusters (𝑁𝑐) [19]. Detection efficiency is the fraction of true 

positive detected artifacts out of the total predetermined 

artifacts, while false positive is the percentage of pixels falsely 

detected as artifacts relative to the number of undisturbed 

pixels. The counts of clusters are expressed in percentage as 

how many clusters of SATRAM were segmented successfully. 

 

 
Fig. 4 Parameter optimization plot. The values of the axes show the 

optimization parameters and the frequency (z-axis), that meets the performance 

properties constraints. The maximum value describes the optimized algorithm 

parameter setting. 
 

The three properties were essential for optimizing ADT, 

L.A. Cosmic and DCR algorithms. We set boundary conditions 

for 𝐸𝑝𝑖𝑥, 𝐹+𝑣𝑒 and 𝑁𝑐 and investigated how often they were 

achieved with different parameter settings for images with 

different levels of disturbance. The plot in Fig. 4 shows the 

frequency of parameter 𝑃𝑛
𝑖(𝑔) and 𝛽 values that meet perfor-

mance properties constraints 𝐸𝑝𝑖𝑥 > 95%, 𝐹+𝑣𝑒 < 0.5% and 

𝑁𝑐 is in the range of ±10%. The optimum values of 𝑃𝑛
𝑖(𝑔) is 5-

10% at 𝛽 values range from 1.9-2.0 for the filling factor range 

1-58%. Other algorithms such as L.A. Cosmic and DCR were 

optimized in the same way with different constraints to carry 

out performance comparisons discussed in section III.A. 
 

2) Radiation Environment Simulation 

Beside the segmentation efficiency evaluation, the integral 

particle flux as result of the artefact segmentation was com-

pared to pre-mission simulations that were also used in previous 

designs [13]. The integral ionizing radiation flux is determined 

by a flux of galactic cosmic rays (GCR), solar particles, and 

trapped particles, each simulated with simulation models 

provided in tools like SPENVIS [22] or OMERE [23]. With 

these tools the effective shielding of the instrument was also 

examined and determined. 

With SPENVIS we simulated the AtmoSHINE environment 

on a SSO with 1067km altitude and an inclination of LTAN 

06:30 UTC. The simulated flux of trapped protons and electrons 

is based on AP8 and AE8 [[24]-[26]] model, solar particles with 

Xapsos [27] and galactic cosmic rays with ISO-15390 model. 

With the "Short-term Single Event Upsets" section in SPENVIS 

we account the effective shielding of the satellite. The integral 

particle flux is calculated, based on MFLUX module provided 

in SPENVIS for previously defined orbit points with a freely 

adjustable shielding thickness. This allows us to compare the 

simulated particle rates in the same grid to the satellite 

measurement points. 
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III. RESULTS 

In order to check ADT algorithm performance and validate the 

results we used SATRAM data as mentioned in the section II.C 

and compared it to L.A. Cosmic and DCR. The comparison 

aspects are detection performance, counts of clusters, and 

computational complexity. The optimum performance is the 

one that matches the limited processing and memory capacities 

of nanosatellites. We then compare the particle flux rate calcu-

lated by the ADT using real measured data from AtmoSHINE 

with the expected simulated results from SPENVIS. In the end, 

we compare the effects of both particle flux rates on a selected 

mitigation method. 

A. Detection performance 

Using optimized parameters for each algorithm, they 

detected the particle tracks of the merged image Fig. 5 (c) as 

shown in Fig. 5 (d-f). The merged image was made of the 

original undisturbed AtmoSHINE image Fig. 5 (b) and the  

 

 

SATRAM reference image of ~4% filling factor Fig. 5 (a). By 

quick visual inspection, all algorithms show sufficient detection 

and artifacts shape preservation at filling factor 4% Fig. 5 (d-f). 

For quantitative analysis, the performance properties: detec-

tion efficiency of pixels, false-positive number and counts of 

clusters are calculated for each algorithm as a function of filling 

factor Fig. 6 (a-c) respectively. In Fig. 6 (a), the three algo-

rithms show good detection efficiencies at low filling factors till 

~10% (weak conditions). 

As it is getting harder to clearly separate pixel clusters from 

each other with more than 10 % of pixels disturbed [11]. DCR 

efficiency declines sharply at filling factors >10%. The sharp 

decline is due to the sub-frame histogram detection method 

used by the algorithm. The artifact pixels predominate the local 

distribution of pixels values. This predominance increases the 

threshold value for the sub-frame missing most of artifact 

pixels. 

 
Fig. 5 Upper row: (a) SATRAM image, (b) sub-image of undisturbed AtmoSHINE frame and (c) the merged sub-image. Lower row: Boolean detection maps of 
(d) Laplacian Cosmic algorithm, (e) Adapted Dynamic Threshold method and (f) Detect and remove cosmic rays. Red circles point limited edge detection of  
L.A. Cosmic comparing to ADT and DCR. 

 

Fig. 6 Comparison of pixel detection efficiency (a), numbers of false positive detected pixels (b) and percentage of cluster deviation (c) for L.A Cosmic, Adapted 
dynamic threshold (ADT) and DCR. The DCR is not efficient for filling factors >10% as seen in (a), so the values for the DCR from (b-c) are not very conclusive. 

Because of the chosen parameters, the ADT is slightly over-sensitive in detection, results into higher numbers of false positive detected pixels (b) and the L.A. 

Cosmic shows a non-monotonic behavior. The deviation for small fill factors in (c) is caused by the small absolute number of detected clusters. 
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Although L.A. Cosmic misses the edges of the image during 

the convolution process as pointed in red circles in Fig. 5 (d), 

L.A. Cosmic shows efficiencies >98% similar to ADT for the 

same data set. The false positive numbers 𝐹+𝑣𝑒 of all three 

algorithm are highly dependent on the filling factor. ADT is 

decreasing and shows small numbers for higher filling factor 

Fig. 6 (b). It should be pointed out that in the same figure DCR 

indicates a decreasing number of false positive pixels with the 

filling factor, but this is only due to the decrease of the detection 

capability of the algorithm at fill factors >10%. In Fig. 6 (c) we 

see that the ADT for filling factors above 1% has an uncertainty 

<8% and basically tends to identify more clusters, the L.A. 

Cosmic of <10%, as well as basically identifies fewer clusters 

and the DCR scatters strongly at filling factors >10% . 

The other aspect of the comparison analysis is the computa-

tional complexity to fit satellite’s resources. Based on the used 

methods by each algorithm, we can define the O-notation for 

each of them to calculate the number of running operations. 

Astroscrappy [28] is the used python package in this study to 

run L.A. Cosmic. The package is convolving the image (MxN) 

with Laplacian kernel of size (kxk). The convolution process is 

𝐼(𝑀𝑥𝑁) ∗ (𝑘𝑥𝑘) which implies to quadratic O-notation 𝑂(𝑛2). 

DCR is well optimized in C language. The histogram has a 

quadratic notation [32] also run for the number of sub-frames 

𝑁𝑠𝑢𝑏𝑓 . The O notation of DCR is (𝑁𝑠𝑢𝑏𝑓𝑛2) . On the other hand 

ADT uses an optimized numpy percentile function utilizing 

quick sorting function of quasi-linear complexity 𝑂(𝑛𝑙𝑜𝑔(𝑛)).  

A quantitative analysis of run time using a machine of six CPUs 

with 2.20GHz each and 16 GB RAM is carried out against the 

image size matches the previously mentioned complexities. The 

analysis of run time using the same machine is extended against 

the filing factors Fig. 7. As shown in Fig. 7 (c), DCR shows 

high dependency on the filling factor, run time increases till 

~10%filling factor before decreasing sharply due to detection 

efficiency decline. L.A. Cosmic and ADT are more independent 

of filling factor Fig. 7 (a,b). The quasilinear O-notation of ADT 

gives the algorithm advantage of being computationally 

cheaper than L.A. Cosmic by one order of magnitude. 
 

 
 

Fig. 7 Comparison of runtime for (a) L.A. Cosmic, (b) ADT and (c) DCR at 

different filling factors. 

B. Observed integral particle flux 

During observation on 7 August 2019, interferograms were 

acquired using a region of interest of 840x1160 pixels for day 

and nighttime with a total of 2072 measurements. Each 

acquired image of the AtmoSHINE instrument was analyzed by 

the ADT and bad pixels were removed. These images were 

acquired with the CMOS sensor inside the instrument, and the 

results imply the effective shielding of the satellite. The integral 

particle flux as result of the artifact segmentation is plotted in 

Fig. 8 (a) for the location of the satellite and varies about three 

orders of magnitude in this period, with the highest values when 

passing the SAA region. 

Fig. 8 (b) shows the time distribution of integral particle flux 

according to the simulation with SPENVIS and the determined 

integral particle flux of the ADT by using the AtmoSHINE data. 

The corresponding regions are labeled and show a suitable 

correlation in the SAA region. The difference in particle fluxes 

by an order of magnitude can be explained by daily fluctuations 

[29], which differ significantly from the long-term averaged 

values used in simulation. In addition, we considered variances 

in effective shielding thickness of ± 4 mm. Such variances can 

occur with secondary payloads, but also with inhomogeneous 

radiation. Due to the effective shielding thicknesses in the 

current design, electrons are not dominant in the expected 

particle flux, which allows using the simulating models where 

electrons are only partially considered compared to the well-

modeled protons [13]. In addition, the interaction of electrons 

with electronics is much weaker than for heavier ionizing parti-

cles, so electrons are negligible for further considerations [30]. 

        

Fig. 8. (a) Spatial and (b) time distributions of integral particle flux calculated with the ADT by using the AtmoSHINE measurements on 7 August 2019 at an 

altitude of 1073km. The data shown in (b) provide a section of a 3-hour orbit with two tracks passing the SAA. Time distribution is compared with simulated 

integral particle flux including an equivalent Al shielding thickness of 6 mm. For orientation, the corresponding regions in (a) and (b) are marked in red and in (b) 

a threshold value for further mitigation measures is marked with two dashed lines. 
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C. Mitigation measures 

As result of particle counting, additional mitigation measures 

can be identified. Once, real-time monitoring can be 

implemented to record the accumulated dose rates [31] and thus 

also detect degradation defects in the sensor or identify bad 

pixels. In addition, adjusted exposure times can improve data 

quality depending on the radiation environment. Furthermore, 

at a predefined particle flux threshold, it may be possible to 

protect the instrument by selectively switching sensitive 

components on and off. Investigations based on simulation data 

were performed by Neubert et al. [13] and results in a reduction 

of failure rate due to Single Event Upsets (SEUs) in the 

electronics by a factor of four. This measure is coupled with a 

limitation in measurement time.  

For that case, in Fig. 9 the shutdown time per orbit is  

plotted against the integral particle flux threshold on the  

x-axis. As in Fig. 8 (b), an exemplary threshold value of 400  

particles / (s cm2) (red line) is plotted. Using this threshold and 

taking into account the deviations due to shielding, it results in 

up to 9 % less shutdown time to achieve a similar reliability of 

the instrument. This corresponds to an effective extension of the 

measurement time by approx. 2 hours per day. The difference 

between simulation and measurement remains relatively 

constant in the range of 60-2000 particles / (s cm2). 
 

 
 

Fig. 9. Relative shutdown time for different threshold flux values on 7 August 

2019. The difference in shutdown time between simulated (orange) and 

measured (blue) particle flux by short-term fluctuations is shown according for 

a given threshold line (red). Simulation results include an equivalent Al 

shielding thickness of 6mm and their margins. 

IV. CONCLUSION 

With measurement data of the AtmoSHINE instrument, the 

feasibility of a radiation monitor based on COTS sCMOS 

sensors could be demonstrated. A two-step approach is used to 

detect sensor- and radiation-specific artifacts, were an adapted 

dynamic threshold method drives the segmentation of the 

radiation-specific artifacts. It was shown that the ADT is one 

magnitude of order faster compared to other common 

segmentation methods and has a much smaller parameter space 

with only two parameters, which allowed a fast and easy 

optimization of the parameters. Using the ADT, on more than 

99% of the pixels affected by ionizing particles were detected 

and only a few pixels were detected falsely positive. By  

 

clustering the segmented artifacts, the particle rate could be 

determined with an uncertainty of <8%. 

In the future, the approach will enable real-time detection of 

sensor degradation effects, setting demand-controlled exposure 

times to improve data quality, or triggering additional mitiga-

tion measures. It was shown that the count rates per measure-

ment point can be up to an order of magnitude lower compared 

to simulation results, which enable us to react directly to the 

effective radiation condition behind the shielding, e.g. by 

selectively switching off the instrument. This increases the 

lifetime and it has been shown that the measurement time can 

be extended up to 2 hours per day using the ADT compared to 

estimations based on simulation. 

Further studies are planned to determine the effective 

energies of the particles and resulting LET spectra. This would 

allow a real-time analysis of the actual SEU error rates in order 

to operate the instrument with further mitigation measures even 

longer in orbit and to enable long-term observations. 

REFERENCES 

[1] J. Bouwmeester and J. Guo, “Survey of worldwide pico- and 
nanosatellite missions, distributions and subsystem technology,” 

Acta Astronautica, vol. 67, no. 7–8, pp. 854–862, Oct. 2010, doi: 

10.1016/j.actaastro.2010.06.004. 
[2] A. Poghosyan and A. Golkar, “CubeSat evolution: Analyzing 

CubeSat capabilities for conducting science missions,” Prog. in 

Aerosp. Sciences, vol. 88, pp. 59–83, Jan. 2017, doi: 
10.1016/j.paerosci.2016.11.002. 

[3] M. Kaufmann et al., “A highly miniaturized satellite payload based 

on a spatial heterodyne spectrometer for atmospheric temperature 
measurements in the mesosphere and lower thermosphere,” Atmos. 

Meas. Tech., vol. 11, no. 7, pp. 3861–3870, Jul. 2018, doi: 

10.5194/amt-11-3861-2018. 
[4] R. Turchetta, “CMOS monolithic active pixel sensors (MAPS) for 

scientific applications: Some notes about radiation hardness,” 

Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators, 
Spectrometers, Detectors and Associated Equip., vol. 583, no. 1, 

pp. 131–133, Dec. 2007, doi: 10.1016/j.nima.2007.08.226. 
[5] K. A. LaBel et al., “Commercial microelectronics technologies for 

applications in the satellite radiation environment,” in 1996 IEEE 

AeroConf. Proc., Aspen, CO, USA, Feb. 1996, vol. 1, pp. 375–
390. doi: 10.1109/AERO.1996.495897. 

[6] M. Campola. (2018, Jul.). Taking Smallsats to the Next Level - 

Sensible Radiation Requirements and Qualification That Won’t 
Break the Bank. Proc. of the AIAA/USU Conf. on Small Satellites. 

Utah, United States. [Online]. Available: 

https://digitalcommons.usu.edu/smallsat/2018/all2018/445/. 
Accessed: Nov. 04, 2019. 

[7] D. Sinclair and J. Dyer. (2013, Aug.). Radiation Effects and COTS 

Parts in SmallSats. Proc. of the AIAA/USU Conf. on Small 
Satellites. Utah, United States. [Online]. Available: 

https://digitalcommons.usu.edu/smallsat/2013/all2013/69/. 

Accessed: Nov. 20, 2019. 
[8] P. Yang et al., “MAPS development for the ALICE ITS upgrade,” 

J. Instrum., vol. 10, no. 03, pp. C03030–C03030, Mar. 2015, doi: 

10.1088/1748-0221/10/03/C03030. 
[9] W. Snoeys, “CMOS monolithic active pixel sensors for high 

energy physics,” Nucl. Instrum. Methods Phys. Res. Sect. A: 

Accelerators, Spectrometers, Detectors and Associated Equip., 
vol. 765, pp. 167–171, Nov. 2014, doi: 

10.1016/j.nima.2014.07.017. 

[10] E. F. Mitchell et al., “The Highly Miniaturised Radiation 
Monitor,” J. Instrum., vol. 9, no. 07, pp. P07010–P07010, Jul. 

2014, doi: 10.1088/1748-0221/9/07/p07010. 

[11] C. Granja et al., “The SATRAM Timepix spacecraft payload in 
open space on board the Proba-V satellite for wide range radiation 

https://doi.org/10.1016/j.actaastro.2010.06.004
https://doi.org/10.1016/j.paerosci.2016.11.002
https://doi.org/10.5194/amt-11-3861-2018
https://doi.org/10.1016/j.nima.2007.08.226
https://doi.org/10.1109/AERO.1996.495897
https://digitalcommons.usu.edu/smallsat/2018/all2018/445/
https://digitalcommons.usu.edu/smallsat/2013/all2013/69/
https://doi.org/10.1088/1748-0221/10/03/C03030
https://doi.org/10.1016/j.nima.2014.07.017
https://doi.org/10.1088/1748-0221/9/07/p07010


IEEE TRANSACTIONS ON NUCLEAR SCIENCE 

 

8 

monitoring in LEO orbit,” Planet. and Space Sci., vol. 125, pp. 

114–129, Jun. 2016, doi: 10.1016/j.pss.2016.03.009. 
[12] M. Pérez et al., “Particle detection and classification using 

commercial off the shelf CMOS image sensors,” Nucl. Instrum. 

Methods Phys. Res. Sect. A: Accelerators, Spectrometers, 
Detectors and Associated Equip., vol. 827, pp. 171–180, Aug. 

2016, doi: 10.1016/j.nima.2016.04.072. 

[13] T. Neubert et al., “System-on-module-based long-life electronics 
for remote sensing imaging with CubeSats in low-earth-orbits,” J. 

Appl. Rem. Sens., vol. 13, no. 03, pp. 1–17, Jul. 2019, doi: 

10.1117/1.JRS.13.032507. 
[14] J. Liu et al., “Investigation on a SmallSat CMOS image sensor for 

atmospheric temperature measurement,” in Int. Conf. on Space 

Opt. — ICSO 2018, Chania, Greece, Jul. 2019, vol. 11180, pp. 
2384–2393. doi: 10.1117/12.2536157. 

[15] Yang Cao, Weiqi Jin, Chongliang Liu and Xiu Liu, “Scene-based 

bad pixel dynamic correction and evaluation for IRFPA device,” 
in Advances in Optoelectronics and Micro/nano-optics, 

Guangzhou, China, Dec. 2010, pp. 1–4. doi: 

10.1109/AOM.2010.5713516. 
[16] W. Isoz, T. Svensson and I. Renhorn, “Nonuniformity correction 

of infrared focal plane arrays,” in Infrared Technol. and 

Applications XXXI, Orlando, Florida, USA, May 2005, vol. 5783, 
pp. 949–960. doi: 10.1117/12.606691. 

[17] W. Pych, “A Fast Algorithm for Cosmic‐Ray Removal from 

Single Images,” PUBL ASTRON SOC PAC, vol. 116, no. 816, pp. 
148–153, Feb. 2004, doi: 10.1086/381786. 

[18] P. G. van Dokkum, “Cosmic‐Ray Rejection by Laplacian Edge 

Detection,” PUBL ASTRON SOC PAC, vol. 113, no. 789, pp. 
1420–1427, Nov. 2001, doi: 10.1086/323894. 

[19] C. L. Farage and K. A. Pimbblet, “Evaluation of Cosmic Ray 

Rejection Algorithms on Single-Shot Exposures,” Publ. Astron. 
Soc. Aust, vol. 22, no. 3, pp. 249–256, Jun. 2005, doi: 

10.1071/AS05012. 

[20] C. T. Kirsch, “The Cosmic Ray Background at L2 as Seen in Gaia 
Observations,” M.S. thesis, Dr. Karl Remeis-Sternwarte Bamberg, 

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-

Nürnberg, Germany, 2018. p. 28. 
[21] SATRAM dataset, “SATRAM/Timepix visualization,“ H. Waage 

and CTU Prague, Apr. 2021. [Online]. Available: 
https://satram.utef.cvut.cz/. 

[22] D. Heynderickx, B. Quaghebeur, E. Speelman and E. Daly. (2000, 

Jan.). ESA’s Space Environment Information System (SPENVIS) 
- A WWW interface to models of the space environment and its 

effects. Presented at the 38th Aerosp. Sciences Meeting and 

Exhibit. Reno,NV,USA. [Online]. Available: 
https://arc.aiaa.org/doi/10.2514/6.2000-371. Accessed: Nov. 22, 

2019. doi: 10.2514/6.2000-371 

[23] M. Sajid, N. G. Chechenin, F. S. Torres, E. U. Khan and S. Agha, 
“Space radiation environment prediction for VLSI 

microelectronics devices onboard a LEO satellite using OMERE-

TRAD software,” Advances in Space Res., vol. 56, no. 2, pp. 314–
324, Jul. 2015, doi: 10.1016/j.asr.2015.04.011. 

[24] D. M. Sawyer and J. I. Vette, “Ap-8 trapped proton environment 

for solar maximum and solar minimum,” Nat. Space Sci. Data 
Center, Nat. Aeronaut. and Space Admin., Goddard Space Flight 

Center, United States, Report N--77--18983, Dec. 1976. [Online]. 

Available: 
http://inis.iaea.org/search/search.aspx?orig_q=RN:09351076 

[25] J. I. Vette, “The NASA/National Space Science Data Center: 

Trapped Radiation Environment Model Program (1964-1991),” 
Nat. Space Sci. Data Center (NSSDC), World Data Center A for 

Rockets and Satellites (WDC-A-R & S), Nat. Aeronaut. and Space 

Admin., Goddard Space Flight Center, United States, Technical 
Memorandum (TM) NASA-TM-107993; NAS 1.15:107993; 

NSSDC/WDC-A-R/S-91–29, Nov. 1991. [Online]. Available: 

https://ntrs.nasa.gov/citations/19930001815 
[26] N. V. Kuznetsov, N. I. Nikolaeva, R. A. Nymmik, V. M. Uzhegov, 

M. V. Yakovlev and M. I. Panasyuk, “Comparison of the Models 

of Charged Particle Fluxes in Space,” in 2015 15th Eur. Conf. on 
Radiat. and Its Effects on Components and Systems (RADECS), 

Moscow, Russia, Sep. 2015, pp. 178–181. doi: 

10.1109/RADECS.2015.7365594. 
[27] M. A. Xapsos, G. P. Summers, J. L. Barth, E. G. Stassinopoulos 

and E. A. Burke, “Probability model for worst case solar proton 

event fluences,” IEEE Trans. Nucl. Sci., vol. 46, no. 6, pp. 1481–

1485, Dec. 1999, doi: 10.1109/23.819111. 
[28] C. McCully et al., Astropy/Astroscrappy: V1.0.5 Zenodo Release. 

Zenodo, 2018. doi: 10.5281/ZENODO.1482019. 

[29] C. Granja and S. Polansky, “Mapping the space radiation 
environment in LEO orbit by the SATRAM Timepix payload on 

board the Proba-V satellite,” AIP Conf. Proc., vol. 1753, no. 1, p. 

080006, Jul. 2016, doi: 10.1063/1.4955376. 
[30] S. Gohl, B. Bergmann, H. Evans, P. Nieminen, A. Owens and S. 

Posipsil, “Study of the radiation fields in LEO with the Space 

Application of Timepix Radiation Monitor (SATRAM),” 
Advances in Space Res., vol. 63, no. 5, pp. 1646–1660, Mar. 2019, 

doi: 10.1016/j.asr.2018.11.016. 

[31] M. Paolucci et al., “A real time active pixel dosimeter for 
interventional radiology,” Radiat. Measurements, vol. 46, no. 11, 

pp. 1271–1276, Nov. 2011, doi: 10.1016/j.radmeas.2011.07.006. 

[32] O. Appiah and J. B. Hayfron-Acquah, “Fast Generation of Image’s 
Histogram Using Approximation Technique for Image Processing 

Algorithms,” IJIGSP, vol. 10, no. 3, pp. 25–35, Mar. 2018, doi: 

10.5815/ijigsp.2018.03.04. 

https://doi.org/10.1016/j.pss.2016.03.009
https://doi.org/10.1016/j.nima.2016.04.072
https://doi.org/10.1117/1.JRS.13.032507
https://doi.org/10.1117/12.2536157
https://doi.org/10.1109/AOM.2010.5713516
https://doi.org/10.1117/12.606691
https://doi.org/10.1086/381786
https://doi.org/10.1086/323894
https://doi.org/10.1071/AS05012
https://satram.utef.cvut.cz/
https://arc.aiaa.org/doi/10.2514/6.2000-371
https://doi.org/10.2514/6.2000-371
https://doi.org/10.1016/j.asr.2015.04.011
http://inis.iaea.org/search/search.aspx?orig_q=RN:09351076
https://ntrs.nasa.gov/citations/19930001815
https://doi.org/10.1109/RADECS.2015.7365594
https://doi.org/10.1109/23.819111
https://doi.org/10.5281/ZENODO.1482019
https://doi.org/10.1063/1.4955376
https://doi.org/10.1016/j.asr.2018.11.016
https://doi.org/10.1016/j.radmeas.2011.07.006
https://doi.org/10.5815/ijigsp.2018.03.04

	I. INTRODUCTION
	II. Design Materials and Methods
	A. Instrument overview
	B. Artefact Segmentation
	1) Sensor artefacts
	2) Radiation artefacts

	C. Validation of segmentation and quantification
	1) Algorithm Validation
	2) Radiation Environment Simulation


	III. Results
	A. Detection performance
	B. Observed integral particle flux
	C. Mitigation measures

	IV. Conclusion
	References

